PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Abb, M., Wang, Y., Papasimakis, N., De Groot, C. H., & Muskens, O. L. (2014). Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays. Nano Letters, 14(1), 346–352. https://doi.org/10.1021/nl404115g

  • Agius, C., Brenon, M., Dill, W. G., Kelly, P., Klausmeyer, U., McManama, K., Pogorelsky, A., & Zalogine, A. S. (2000). The impact of the IECEx scheme on the global availability of explosion protected apparatus-update 2000 (parts IV-VII). In Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No. 00CH37129) (Vol. 4, pp. 2844-2851). IEEE Publishing. https://doi.org/10.1109/IAS.2000.883225

  • Allsop, T., & Neal, R. (2021). A review: Application and implementation of optic fibre sensors for gas detection. Sensors, 21(20), Article 6755. https://doi.org/10.3390/s21206755

  • Allsop, T., Kundrat, V., Kalli, K., Lee, G. B., Neal, R., Bond, P., Shi, B., Sullivan, J., Culverhouse, P., & Webb, D. J. (2018). Methane detection scheme based upon the changing optical constants of a zinc oxide/platinum matrix created by a redox reaction and their effect upon surface plasmons. Sensors and Actuators B: Chemical, 255, 843–853. https://doi.org/10.1016/j.snb.2017.08.058

  • Atherton, K., Yu, H., Stewart, G., & Culshaw, B. (2004). Gas detection with fibre amplifiers by intra-cavity and cavity ring-down absorption. Measurement Science and Technology, 15, 1621–1628.

  • Bachu, S. (2017). Analysis of gas leakage occurrence along wells in Alberta, Canada, from a GHG perspective – Gas migration outside well casing. International Journal of Greenhouse Gas Control, 61, 146–154. https://doi.org/10.1016/j.ijggc.2017.04.003

  • Beckwith, P. H., Brown, C. E., Danagher, D. J., Smith, D. R., & Reid, J. (1987). High sensitivity detection of transient infrared absorption using tunable diode lasers. Applied Optics, 26(13), Article 2643. https://doi.org/10.1364/AO.26.002643

  • Bito, K., Okuno, M., Kano, H., Leproux, P., Couderc, V., & Hamaguchi, H. (2013). Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source. Chemical Physics, 419, 156–162. https://doi.org/10.1016/j.chemphys.2013.02.007

  • Butt, M. A., Voronkov, G. S., Grakhova, E. P., Kutluyarov, R. V., Kazanskiy, N. L., & Khonina, S. N. (2022). Environmental monitoring: A comprehensive review on optical waveguide and fiber-based sensors. Biosensors, 12(11), Article 1038. https://doi.org/10.3390/bios12111038

  • Caumon, M. C., Robert, P., Laverret, E., Tarantola, A., Randi, A., Pironon, J., Dubessy, J., & Girard, J. P. (2014). Determination of methane content in NaCl–H2O fluid inclusions by Raman spectroscopy. Calibration and application to the external part of the Central Alps (Switzerland). Chemical Geology, 378–379, 52–61. https://doi.org/10.1016/j.chemgeo.2014.03.016

  • Collins, W., Orbach, R., Bailey, M., Biraud, S., Coddington, I., DiCarlo, D., Peischl, J., Radhakrishnan, A., & Schimel, D. (2022). Monitoring methane emissions from oil and gas operations. Optics Express, 30(14), Article 24326. https://doi.org/10.1364/OE.464421

  • Dong, L., Yin, W., Ma, W., Zhang, L., & Jia, S. (2007). High-sensitivity, large dynamic range, auto-calibration methane optical sensor using a short confocal Fabry–Perot cavity. Sensors and Actuators B: Chemical, 127(2), 350–357. https://doi.org/10.1016/j.snb.2007.04.030

  • Fawcett, B. L., Parkes, A. M., Shallcross, D. E., & Orr-Ewing, A. J. (2002). Trace detection of methane using continuous wave cavity ring-down spectroscopy at 1.65 μm. Physical Chemistry Chemical Physics, 4(24), 5960–5965. https://doi.org/10.1039/B208486B

  • Foltynowicz, A., Schmidt, F. M., Ma, W., & Axner, O. (2008). Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential. Applied Physics B, 92(3), Article 313. https://doi.org/10.1007/s00340-008-3126-z

  • Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N., & Giuranna, M. (2004). Detection of methane in the atmosphere of Mars. Science, 306(5702), 1758–1761. https://doi.org/10.1126/science.1101732

  • Gao, Q., Zhang, Y., Yu, J., Wu, S., Zhang, Z., Zheng, F., Lou, X., & Guo, W. (2013). Tunable multi-mode diode laser absorption spectroscopy for methane detection. Sensors and Actuators A: Physical, 199, 106–110. https://doi.org/10.1016/j.sna.2013.05.012

  • Gardiner, T., Mead, M. I., Garcelon, S., Robinson, R., Swann, N., Hansford, G. M., Woods, P. T., & Jones, R. L. (2010). A lightweight near-infrared spectrometer for the detection of trace atmospheric species. Review of Scientific Instruments, 81(8), Article 083102. https://doi.org/10.1063/1.3455827

  • Gomolka, G., Stępniewski, G., Pysz, D., Buczynski, R., Klimczak, M., & Nikodem, M. (2021). Methane sensing inside anti-resonant hollow-core fiber in the near- and mid-infrared spectral regions. In P. Peterka, K. Kalli, & A. Mendez (Eds.), Micro-structured and Specialty Optical Fibres VII (p. 6). SPIE. https://doi.org/10.1117/12.2592300

  • Gurlit, W., Zimmermann, R., Giesemann, C., Fernholz, T., Ebert, V., Wolfrum, J., Platt, U., & Burrows, J. P. (2005). Lightweight diode laser spectrometer CHILD (Compact High-altitude In-situ Laser Diode) for balloonborne measurements of water vapor and methane. Applied Optics, 44(1), Article 91. https://doi.org/10.1364/AO.44.000091

  • Hamilton, D. J., & Orr-Ewing, A. J. (2011). A quantum cascade laser-based optical feedback cavity-enhanced absorption spectrometer for the simultaneous measurement of CH4 and N2O in air. Applied Physics B, 102(4), 879–890. https://doi.org/10.1007/s00340-010-4259-4

  • Hansuld, E. M., & Briens, L. (2014). A review of monitoring methods for pharmaceutical wet granulation. International Journal of Pharmaceutics, 472(1–2), 192–201. https://doi.org/10.1016/j.ijpharm.2014.06.027

  • He, Y., & Orr, B. J. (2000). Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity. Chemical Physics Letters, 319(1–2), 131–137. https://doi.org/10.1016/S0009-2614(00)00107-X

  • Hennig, O., Strzoda, R., Mágori, E., Chemisky, E., Tump, C., Fleischer, M., Meixner, H., & Eisele, I. (2003). Hand-held unit for simultaneous detection of methane and ethane based on NIR-absorption spectroscopy. Sensors and Actuators B: Chemical, 95(1–3), 151–156. https://doi.org/10.1016/S0925-4005(03)00399-X

  • Hester, K. C., Dunk, R. M., White, S. N., Brewer, P. G., Peltzer, E. T., & Sloan, E. D. (2007). Gas hydrate measurements at Hydrate Ridge using Raman spectroscopy. Geochimica et Cosmochimica Acta, 71(12), 2947–2959. https://doi.org/10.1016/j.gca.2007.03.032

  • Hippler, M., & Quack, M. (2002). High-resolution Fourier transform infrared and cw-diode laser cavity ringdown spectroscopy of the ν2+2ν3 band of methane near 7510 cm−1 in slit jet expansions and at room temperature. The Journal of Chemical Physics, 116(14), 6045–6055. https://doi.org/10.1063/1.1433505

  • Hodgkinson, J., & Pride, R. D. (2010). Methane-specific gas detectors: The effect of natural gas composition. Measurement Science and Technology, 21(10), Article 105103. https://doi.org/10.1088/0957-0233/21/10/105103

  • Hodgkinson, J., & Tatam, R. P. (2013). Optical gas sensing: A review. Measurement Science and Technology, 24(1), Article 012004. https://doi.org/10.1088/0957-0233/24/1/012004

  • Hodgkinson, J., Shan, Q., & Pride, R. D. (2006). Detection of a simulated gas leak in a wind tunnel. Measurement Science and Technology, 17(6), 1586–1593. https://doi.org/10.1088/0957-0233/17/6/041

  • Hollenbeck, D., Zulevic, D., & Chen, Y. (2021). Advanced leak detection and quantification of methane emissions using sUAS. Drones, 5(4), Article 117. https://doi.org/10.3390/drones5040117

  • Homola, J., & Piliarik, M. (2006). Surface Plasmon Resonance (SPR) sensors. Springer.

  • Hong, T., Culp, J. T., Kim, K. J., Devkota, J., Sun, C., & Ohodnicki, P. R. (2020). State-of-the-art of methane sensing materials: A review and perspectives. TrAC Trends in Analytical Chemistry, 125, Article 115820. https://doi.org/10.1016/j.trac.2020.115820

  • Ingraffea, A. R., Wawrzynek, P. A., Santoro, R., & Wells, M. (2020). Reported methane emissions from active oil and gas wells in Pennsylvania, 2014–2018. Environmental Science & Technology, 54(9), 5783–5789. https://doi.org/10.1021/acs.est.0c00863

  • Iseki, T., Tai, H., & Kimura, K. (2000). A portable remote methane sensor using a tunable diode laser. Measurement Science and Technology, 11(6), 594–602. https://doi.org/10.1088/0957-0233/11/6/302

  • Ismaeel, R., Beaton, A., Donko, A., Talataisong, W., Lee, T., Brotin, T., Beresna, M., Mowlem, M., & Brambilla, G. (2019). High sensitivity all-fibre methane sensor with gas permeable teflon/cryptophane-a membrane. In The European Conference on Lasers and Electro-Optics (p. ch_6_5). Optica Publishing Group.

  • Jaramillo, P., Griffin, W. M., & Matthews, H. S. (2008). Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas. Environmental Science & Technology, 42(20), 7559–7565. https://doi.org/10.1021/es8002074

  • Kamal, D. A. M., Ibrahim, S. F., Kamal, H., Kashim, M. I. A. M., & Mokhtar, M. H. (2021). Physicochemical and medicinal properties of Tualang, Gelam and Kelulut Honeys: A comprehensive review. Nutrients, 13(1), Article 197. https://doi.org/10.3390/nu13010197

  • Kannath, A., Hodgkinson, J., Gillard, R. G., Riley, R. J., & Tatam, R. P. (2011). A VCSEL based system for on-site monitoring of low level methane emission. In Vertical-Cavity Surface-Emitting Lasers XV (Vol. 7952, pp. 99-107). SPIE. https://doi.org/10.1117/12.874513

  • Kim, K. J., Chong, X., Kreider, P. B., Ma, G., Ohodnicki, P. R., Baltrus, J. P., Wang, A. X., & Chang, C. H. (2015). Plasmonics-enhanced metal–organic framework nanoporous films for highly sensitive near-infrared absorption. Journal of Materials Chemistry C, 3(12), 2763–2767. https://doi.org/10.1039/C4TC02846E

  • Kwaśny, M., & Bombalska, A. (2023). Optical methods of methane detection. Sensors, 23(5), Article 2834. https://doi.org/10.3390/s23052834

  • Lang, N., Macherius, U., Wiese, M., Zimmermann, H., Röpcke, J., & Van Helden, J. H. (2016). Sensitive CH_4 detection applying quantum cascade laser based optical feedback cavity-enhanced absorption spectroscopy. Optics Express, 24(6), Article A536. https://doi.org/10.1364/OE.24.00A536

  • Lawrence, N. (2006). Analytical detection methodologies for methane and related hydrocarbons. Talanta, 69(2), 385–392. https://doi.org/10.1016/j.talanta.2005.10.005

  • Liu, H., Wang, H., Chen, C., Zhang, W., Bai, B., Chen, C., Zhang, Y., & Shao, Q. (2020). High sensitive methane sensor based on twin-core photonic crystal fiber with compound film-coated side-holes. Optical and Quantum Electronics, 52(2), Article 81. https://doi.org/10.1007/s11082-020-2198-9

  • Liu, H., Wang, M., Wang, Q., Li, H., Ding, Y., & Zhu, C. (2018). Simultaneous measurement of hydrogen and methane based on PCF-SPR structure with compound film-coated side-holes. Optical Fiber Technology, 45, 1–7. https://doi.org/10.1016/j.yofte.2018.05.007

  • Liu, H., Zhang, Y., Chen, C., Bai, B., Shao, Q., Wang, H., Zhang, W., Chen, C., & Tang, S. (2019). Transverse-stress compensated methane sensor based on long-period grating in photonic crystal fiber. IEEE Access, 7, 175522–175530. https://doi.org/10.1109/ACCESS.2019.2951133

  • McDermitt, D., Burba, G., Xu, L., Anderson, T., Komissarov, A., Riensche, B., Schedlbauer, J., Starr, G., Zona, D., Oechel, W., Oberbauer, S., & Hastings, S. (2011). A new low-power, open-path instrument for measuring methane flux by eddy covariance. Applied Physics B, 102(2), 391–405. https://doi.org/10.1007/s00340-010-4307-0

  • McManus, J. B. (2010). Application of quantum cascade lasers to high-precision atmospheric trace gas measurements. Optical Engineering, 49(11), Article 111124. https://doi.org/10.1117/1.3498782

  • McManus, J. B., Shorter, J. H., Nelson, D. D., Zahniser, M. S., Glenn, D. E., & McGovern, R. M. (2008). Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air. Applied Physics B, 92(3), Article 387. https://doi.org/10.1007/s00340-008-3129-9

  • Mikołajczyk, J., Wojtas, J., Bielecki, Z., Stacewicz, T., Szabra, D., Magryta, P., Prokopiuk, A., Tkacz, A., & Panek, M. (2016). System of optoelectronic sensors for breath analysis. Metrology and Measurement Systems, 23(3), 481–489. https://doi.org/10.1515/mms-2016-0030

  • Mishra, S. K., Tripathi, S. N., Choudhary, V., & Gupta, B. D. (2015). Surface plasmon resonance-based fiber optic methane gas sensor utilizing graphene-carbon nanotubes-poly(methyl methacrylate) hybrid nanocomposite. Plasmonics, 10(5), 1147–1157. https://doi.org/10.1007/s11468-015-9914-5

  • Ohodnicki Jr., P. R., Brown, T. D., Holcomb, G. R., Tylczak, J., Schultz, A. M., & Baltrus, J. P. (2014). High temperature optical sensing of gas and temperature using AU-nanoparticle incorporated oxides. Sensors and Actuators B: Chemical, 202, 489–499. https://doi.org/10.1016/j.snb.2014.04.106

  • Olmer, N., Comer, B., Roy, B., Mao, X., & Rutherford, D. (2019, November 25). Greenhouse gas emissions from global shipping, 2013—2015 Detailed Methodology. https://www.theicct.org/publications/GHG-emissions-globalshipping-2013-2015

  • Paldus, B. A., & Kachanov, A. A. (2005). An historical overview of cavity-enhanced methods. Canadian Journal of Physics, 83(10), 975–999. https://doi.org/10.1139/p05-054

  • Park, J. H., Cho, J. H., Kim, Y. J., Kim, E. S., Han, H. S., & Shin, C. H. (2014). Hydrothermal stability of Pd/ZrO2 catalysts for high temperature methane combustion. Applied Catalysis B: Environmental, 160–161, 135–143. https://doi.org/10.1016/j.apcatb.2014.05.013

  • Pipino, A. C. R. (1999). Ultrasensitive surface spectroscopy with a miniature optical resonator. Physical Review Letters, 83(15), 3093–3096. https://doi.org/10.1103/PhysRevLett.83.3093

  • Pyun, S. H., Cho, J., Davidson, D. F., & Hanson, R. K. (2011). Interference-free mid-IR laser absorption detection of methane. Measurement Science and Technology, 22(2), Article 025303. https://doi.org/10.1088/0957-0233/22/2/025303

  • Richard, E. C., Kelly, K. K., Winkler, R. H., Wilson, R., Thompson, T. L., McLaughlin, R. J., Schmeltekopf, A. L., & Tuck, A. F. (2002). A fast-response near-infrared tunable diode laser absorption spectrometer for in situ measurements of CH 4 in the upper troposphere and lower stratosphere. Applied Physics B: Lasers and Optics, 75(2–3), 183–194. https://doi.org/10.1007/s00340-002-0935-3

  • Romanini, D., Kachanov, A. A., & Stoeckel, F. (1997). Diode laser cavity ring down spectroscopy. Chemical Physics Letters, 270(5–6), 538–545. https://doi.org/10.1016/S0009-2614(97)00406-5

  • Rothman, L. S., Gordon, I. E., Barbe, A., Benner, D. C., Bernath, P. F., Birk, M., Boudon, V., Brown, L. R., Campargue, A., Champion, J.-P., Chance, K., Coudert, L. H., Dana, V., Devi, V. M., Fally, S., Flaud, J.-M., Gamache, R. R., Goldman, A., Jacquemart, D., … & Vander Auwera, J. (2009). The HITRAN 2008 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 110(9–10), 533–572. https://doi.org/10.1016/j.jqsrt.2009.02.013

  • Schlücker, S. (2014). Surface‐enhanced Raman spectroscopy: Concepts and chemical applications. Angewandte Chemie International Edition, 53(19), 4756–4795. https://doi.org/10.1002/anie.201205748

  • Shao, L., Fang, B., Zheng, F., Qiu, X., He, Q., Wei, J., Li, C., & Zhao, W. (2019). Simultaneous detection of atmospheric CO and CH4 based on TDLAS using a single 2.3 μm DFB laser. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 222, Article 117118. https://doi.org/10.1016/j.saa.2019.05.023

  • Shemshad, J., Aminossadati, S. M., & Kizil, M. S. (2012). A review of developments in near infrared methane detection based on tunable diode laser. Sensors and Actuators B: Chemical, 171–172, 77–92. https://doi.org/10.1016/j.snb.2012.06.018

  • Stocker, T. F., Dahe, Q., Plattner, G. K., Tignor, M. B., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., & Midgley, P. (2014). Climate Change 2013: The Physical Science Basis. Cambridge University Press.

  • Tiemann, M. (2007). Porous metal oxides as gas sensors. Chemistry – A European Journal, 13(30), 8376–8388. https://doi.org/10.1002/chem.200700927

  • Tombez, L., Zhang, E. J., Orcutt, J. S., Kamlapurkar, S., & Green, W. M. J. (2017). Methane absorption spectroscopy on a silicon photonic chip. Optica, 4(11), Article 1322. https://doi.org/10.1364/OPTICA.4.001322

  • Tran, M. K., & Fowler, M. (2020). A review of lithium-ion battery fault diagnostic algorithms: Current progress and future challenges. Algorithms, 13(3), Article 62. https://doi.org/10.3390/a13030062

  • Turner, A. J., Frankenberg, C., & Kort, E. A. (2019). Interpreting contemporary trends in atmospheric methane. Proceedings of the National Academy of Sciences, 116(8), 2805–2813. https://doi.org/10.1073/pnas.1814297116

  • Vargas-Rodríguez, E., & Rutt, H. N. (2009). Design of CO, CO2 and CH4 gas sensors based on correlation spectroscopy using a Fabry–Perot interferometer. Sensors and Actuators B: Chemical, 137(2), 410–419. https://doi.org/10.1016/j.snb.2009.01.013

  • Vasiliev, A. A., Pisliakov, A. V., Sokolov, A. V., Polovko, O. V., Samotaev, N. N., Kujawski, W., Rozicka, A., Guarnieri, V., & Lorencelli, L. (2014). Gas sensor system for the determination of methane in water. Procedia Engineering, 87, 1445–1448. https://doi.org/10.1016/j.proeng.2014.11.721

  • Wang, X., & Wolfbeis, O. S. (2016). Fiber-optic chemical sensors and biosensors (2013–2015). Analytical Chemistry, 88(1), 203–227. https://doi.org/10.1021/acs.analchem.5b04298

  • Wang, Z., Gao, P., Liu, S., & Chen, X. (2021). A reflective methane concentration sensor based on biconvex cone photonic crystal fiber. Optik, 241, Article 166983. https://doi.org/10.1016/j.ijleo.2021.166983

  • Wei, T., Wu, H., Dong, L., Cui, R., & Jia, S. (2021). Palm-sized methane TDLAS sensor based on a mini-multi-pass cell and a quartz tuning fork as a thermal detector. Optics Express, 29(8), Article 12357. https://doi.org/10.1364/OE.423217

  • Wei, W., Nong, J., Zhang, G., Tang, L., Jiang, X., Chen, N., Luo, S., Lan, G., & Zhu, Y. (2016). Graphene-based long-period fiber grating surface plasmon resonance sensor for high-sensitivity gas sensing. Sensors, 17(12), Article 2. https://doi.org/10.3390/s17010002

  • Wild, K. (2000). Gas quality measurement: A gas control revolution? Gas Engineering and Management, 40, 12–14.

  • Wisen, J., Chesnaux, R., Werring, J., Wendling, G., Baudron, P., & Barbecot, F. (2020). A portrait of wellbore leakage in northeastern British Columbia, Canada. Proceedings of the National Academy of Sciences, 117(2), 913–922. https://doi.org/10.1073/pnas.1817929116

  • Xie, S., Pennetta, R., & Russell, P. St. J. (2016). Self-alignment of glass fiber nanospike by optomechanical back-action in hollow-core photonic crystal fiber. Optica, 3(3), Article 277. https://doi.org/10.1364/OPTICA.3.000277

  • Yang, J., Che, X., Shen, R., Wang, C., Li, X., & Chen, W. (2017). High-sensitivity photonic crystal fiber long-period grating methane sensor with cryptophane-A-6Me absorbed on a PAA-CNTs/PAH nanofilm. Optics Express, 25(17), Article 20258. https://doi.org/10.1364/OE.25.020258

  • Yu, X., Lv, R. H., Song, F., Zheng, C. T., & Wang, Y. D. (2014). Pocket-sized nondispersive infrared methane detection device using two-parameter temperature compensation. Spectroscopy Letters, 47(1), 30–37. https://doi.org/10.1080/00387010.2013.780082

  • Zhang, J. Y., Ding, E. J., Xu, S. C., Li, Z. H., Wang, X. X., & Song, F. (2017). Sensitization of an optical fiber methane sensor with graphene. Optical Fiber Technology, 37, 26–29. https://doi.org/10.1016/j.yofte.2017.06.011

  • Zhang, Y., Zhao, Y., & Wang, Q. (2015). Measurement of methane concentration with cryptophane E infiltrated photonic crystal microcavity. Sensors and Actuators B: Chemical, 209, 431–437. https://doi.org/10.1016/j.snb.2014.12.002

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

J

Download Full Article PDF

Share this article

Recent Articles