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ABSTRACT

This study aims to develop a side-sensitive modified group runs control chart using auxiliary 
information (SSMGR-AI) to enhance the speed of detecting mean shifts in a process. The 
average run length (ARL) and expected average run length (EARL) criteria are adopted 
as performance measures of the proposed chart. The performance of the proposed chart is 
compared to the exponentially weighted moving average chart with AI (EWMA-AI) and 
the run sum chart with AI (RS-AI), in terms of the ARL and EARL criteria. The results 
reveal that the optimal SSMGR-AI chart generally outperforms all charts under comparison 
for detecting shifts in the process mean. An application with numerical data is presented 
to elaborate the implementation of the SSMGR-AI chart.

Keywords: Auxiliary information (AI), average run length (ARL), expected average run length (EARL), side-

sensitivity, side-sensitive modified group runs (SSMGR)

INTRODUCTION

Control charts are a well-known process 
used to maintain the quality of production 
in modern industries and manufacturing 
sectors. The main purpose of the control 
chart is to monitor infrequent changes in 
manufacturing and industrial processes. In 
1924, Shewhart first developed the Shewhart 
X  control chart which depended on a single 

characteristic to monitor the process mean 
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of product quality (Montgomery, 2009). Later, enormous research on control charts has 
resulted in different dimensions of the basic chart used to detect dissimilarities in production 
parameters such as mean, variation or both. The concept of rational sub-grouping is 
employed to detect unusual patterns in the production process. Efficient estimators of the 
desired parameters are computed from each sub-group and integrated into the Shewhart, 
EWMA or CUSUM control chart to detect shifts in the mean, variance or both. Bourke 
(1991) suggested that the conforming run length (CRL) chart could be used to detect 
shifts in the fraction of non-conforming items in a production process. Wu and Spedding 
(2000) developed a synthetic chart which combined Shewhart X  chart and CRL chart to 
monitor shifts in the process mean. To enhance the performance of synthetic chart, Gadre 
and Rattihalli (2004) proposed group runs (GR) control chart to detect shifts in the process 
mean. By modifying the GR chart, Gadre and Rattihalli (2006) further presented a modified 
group runs (MGR) control chart which was useful to identify increases in the fraction of 
non-conforming items and detect shifts in the process mean. 

Davis and Woodall (2002) highlighted that side-sensitivity feature could be used 
to improve the chart performance and proposed the side-sensitive synthetic chart. A 
side-sensitive group runs (SSGR) chart investigated by Gadre and Rattihalli (2007) had 
surpassed the Shewhart, synthetic and GR charts. Furthermore, Gadre et al. (2010) proposed 
a side-sensitive modified group runs (SSMGR) chart, where it was shown that this chart 
performed better than the Shewhart, synthetic, GR, side-sensitive group runs (SSGR) and 
MGR charts. To extend the work of Garde et al. (2010), Saha et al. (2018a) proposed the 
SSMGR double sampling (SSMGRDS) chart and the latter was found to outperform its 
basic counterparts. 

In the last decade, the use of auxiliary information in Statistical Process Control has 
gained the attention of researchers. If a variable is known for every unit of the population 

but it is not a variable of interest, then the said variable can be used as an auxiliary variable, 

where information from the auxiliary variable, called auxiliary information, along with the 

main variable of interest, enhances the level of precision of the control charting statistic. 
Riaz (2008) proposed a new Shewhart type chart to monitor the process mean with auxiliary 
information along with a regression estimator. Riaz et al. (2013) highlighted that in the 
presence of auxiliary information, a control chart could perform efficiently under normality 
and non-normality assumptions with estimation effects. Abbas et al. (2014) showed that 
the exponentially-weighted moving average chart with single auxiliary information 
(EWMA-AI) performed better than its univariate and bivariate competitors to detect small 
and moderate shifts. Abbasi and Riaz (2016) found that the use of auxiliary information 
in-control charts enabled the charts to detect shifts more efficiently and quickly than the 
charts without auxiliary information. 
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Haq and Khoo (2016) showed that a new synthetic control chart based on both study 
and auxiliary variable had performed more effectively than the classical synthetic chart 
and also its univariate and bivariate competitors. Saha et al. (2018b) developed a variable 
sample size and sampling interval (VSSI) control chart using auxiliary information (VSSI 
AI) to monitor the process mean, while the average time to signal (ATS) and expected time 
to signal (EATS) criteria were adopted as performance measures. A run sum chart for the 
mean based on auxiliary characteristics (RS-AI) was proposed by Ng et al. (2018) and 
compared with the Shewhart AI, synthetic AI, and EWMA- AI charts.

In this research, the auxiliary information procedure is incorporated into the existing 
SSMGR chart, in order to propose the side-sensitive modified group runs chart with 
auxiliary information (SSMGR-AI) to detect process shifts. The ARL and EARL criteria 
are applied to measure how quickly the proposed chart can detect infrequent changes in 
production. An optimal design is conducted to compute optimal parameters of the SSMGR-
AI chart by minimizing the out-of-control ARL and EARL values for different mean shifts 
and shift intervals, respectively. After that, the SSMGR-AI chart is compared with the 
EWMA-AI and RS-AI charts. Finally, a numerical example, based on generated data, is 
given to explain the implementation of the proposed SSMGR-AI chart.

Existing Control Charting Method: SSMGR Chart

Gadre et al. (2010) assimilated both the X̅ sub-chart and the CRL sub-chart into the SSMGR 
chart. The upper control limit (UCLX̅) and lower control limit (LCLX̅) of the X̅ sub-chart 
is calculated as

                                        0
0X XUCL k

n
σµ= +     	 [1]

                                        
0

0X XLCL k
n

σµ= −  ,		  [2]

where, Xk  is the width constant controlling the width of the X̅ sub-chart to satisfy 
the desire in-control performance. When the sample mean X̅ falls within ( ),X XLCL UCL , the 
sample is called conforming; otherwise, the sample is considered as non-conforming. The 
conforming run length (CRL) is defined as the number of conforming samples inspected 
between the (q – 1)th and thq  non-conforming samples, including the thq  non-conforming 
sample. The value of CRLq at the qth non-conforming sample is defined as Yq throughout 
the paper. The procedure of the SSMGR X̅ chart is described by the following steps:

Step 1. Draw n successive products and compute sample mean X̅ from a process of 
following ( )2

1,N µ σ
 
distribution with the in-control mean 0µ and standard deviation σ . 

Here 1 0µ µ δσ= ± , and when the process is in-control, δ = 0; otherwise, the process is out-
of-control.
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Step 2. When X̅ falls between the limits UCLX̅ and LCLX̅ , the sample is declared as 
conforming, otherwise, it is considered as non-conforming. 

Step 3. If a sample is conforming, return to Step 1. Otherwise, compute qY , for q = 
1, 2, ….

Step 4. If Y1 ≤ W2 or for q > 1, Yq ≤ W1, and Yq+1 ≤ W2, declare the process as out-of-
control, where the thq  and ( )1 thq + non-conforming sample means lie on the same side of 
the target value 0µ , while Wl (l = 1, 2) is the lower limit of the CRL sub-chart. Otherwise, 
return to Step 1. 

New Control Charting Method: SSMGR-AI Chart

In this research, information from the primary variable (S) and auxiliary variable (M) 
are considered to develop the SSMGR-AI chart by incorporating the SSMGR charting 
approach. The chart statistic is designed in such a way that it detects only the shifts in the 
process mean of primary variable S.

Assume a joint distribution between the two bivariate normal variates (S, M) with 
parameters µS, µM, 2

Sσ , 2
Mσ and ρ . Here, µS and 2

Sσ  indicate the population mean and 
variance of the primary variable S, while µM  and 2

Mσ  are the population mean and variance 
of the auxiliary variable M. ρ  is the correlation coefficient between S and M. The joint 
distribution of (S, M) can be expressed as 

			         
( ) ( )2 2

2 0, ~ , , , ,S S M S MS M N µ δσ µ σ σ ρ+ , 		 [3]

where 0S S Sµ µ δσ= + . Here, δ is the size of the standardized mean shift of variable 
S. Let ( ),ij ijS M  for j = 1, 2……n , denote the thi  random sample from a bivariate normal 
distribution. According to Riaz (2008), an unbiased estimator of 

iSµ  is given as

                                       ( )*ˆ ˆ ˆ
i i iS S M Mµ µ β µ µ= + − ,		  [4]

where ˆ
iSµ  and ˆ

iMµ  are the thi  sample means of S and M, respectively. Here, 

1

ˆ /
i

n

S i j
j

Y Y nµ
=

= = ∑ , 
1

ˆ /
i

n

M i j
j

M M nµ
=

= = ∑ , and ( )S Mβ ρ σ σ= . It is noted that ˆ
iSµ is a special 

case of *ˆ
iSµ when ρ = 0 (see Equation [4]).

(S, M) follows the bivariate normal distribution and the random variable *ˆ
iSµ follows a 

normal distribution and can be defined as (Riaz, 2008): 
                                       ( )( )( )* 2 2

0ˆ ~ , 1
iS S S SN nµ µ δσ σ ρ+ − .		  [5]

Here, *ˆ
iSµ (for i = 1, 2, …) are the quality characteristics monitored by a process. If the 

process is in-control, the target mean of *ˆ
iSµ is µS0.

The control limits of the SSMGR-AI chart based on *ˆ
iSµ  are obtained by
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                                       2
0 1S

SUCL k
n

σµ ρ= + −

		
[6]                		

			         2
0 1S

SLCL k
n

σµ ρ= − −

		
[7]

where, k  is the control limit coefficient of the SSMGR-AI chart which depends on 
the desired in-control performance. 

The implementation procedures for the SSMGR-AI chart is the same as that of the 
SSMGR X chart of Gadre et al. (2010) which were discussed in above Section. The 
probability of a non-conforming sample when the process mean has shifted by δ standard 
deviation is defined as

                                  
( ) ( )( ) ( )( )2 21 / 1 / 1P k n k nδ δ ρ δ ρ= − Φ − − + Φ − − − .

The ARL for the SSMGR-AI chart is formulated as

                                 ( ) ( )
( )

( ){ }
1 2 1 2

1 2

1 2 11ARL
1 2 1

C C C C
P C C

α α
δ

δ α α
+ − − −

= ×
− −  

,	 [8]

where ( )( )1 1 lW
lC P δ= − − , for l = 1, 2, and

                                     ( )( )
( )

21 / 1k n

P

δ ρ
α

δ

− Φ − −
= . 		  [9]

Here, α is the probability of the non-conforming sample having an upward shift with 
a shift size of δ, and ( )Φ ⋅ represents the cumulative distribution function of a standard 
normal random variable.

The expected average run length (EARL) to signal which considers an overall range 
of shifts (δmin , δmax) is computed as

                                        ( ) ( )max

min

EARL ARL f d
δ

δ
δ δ δ= ∫ , 	 [10]                                                               

where ( )ARL δ  is the value of ARL in Equation [8] for the shift δ and ( )f δ  are the 
probability density function (pdf) of the shift δ . The probability that a mean shift will 
occur in the range δmin ≤ δ ≤ δmax  is considered equal. Here, δ  is assumed to be uniformly 
distributed (Sparks, 2000), i.e. δ ∼ U(δmin , δmax). It can be written from Equation [9] as 
follows 					          

max

min
min max

max min

1EARL( , ) ARL( )d
δ

δ
δ δ δ δ

δ δ
=

− ∫ . 	 [11]
Optimization Method of the SSMGR-AI Chart

The purpose of an optimal design is to compute the optimal parameters (k, W1, W2) in such
a way that minimizes the ARL(δ) or ARL (δmin , δmax) criterion, for a given ρ  and an exact 
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shift size δ or shift interval (δmin , δmax). The algorithm to compute the optimal parameters 
of the SSMGR-AI chart in minimizing ARL (δ) consists of the following eight steps:

Step 1. Specify the in-control ARL (ARL0), sample size (n) and shift size (δ). Then let 
W1 = 0 and W2 = 0. Additionally, initialize ARLmin = ∞ and ARLopt = ∞. Here, ARL0 is the 
target value of ARL (δ) when δ = 0.  

 Step 2. Start with W1 = W1 + 1.
Step 3. Set W2 = W2 + 1.
Step 4. Determine the value of k by solving Equation [8], so that ARL(0) = ARL0.
Step 5. Calculate ARL (δ), for the shift size δ,  using Equation [8] and the current 

values of k, W1 and W2.
Step 6. If ARL(δ) < ARLmin, then let ARLmin = ARL(δ) and return to Step 3. Otherwise, 

proceed to the next step.
Step 7. If ARLmin < ARLopt then ARLopt = ARLmin. Reset W2 = 0 and return to Step 2. 

Otherwise, proceed to the next step.
Step 8. ARLopt  is recorded as the minimum ARL(δ) value and the corresponding k, W1 

and W2, values are taken as the optimal parameters of the SSMGR-AI chart which satisfies 
ARL(0) = ARL0.

This eight steps algorithm is also presented in a flowchart in Figure 1, in order to 
facilitate a better understanding of the aforementioned algorithm.

By following the same algorithm as in Steps 1 – 8, the optimal parameters of the 
SSMGR-AI chart are also obtained by minimising the EARL (δmin, δmax) value for the shift 
interval (δmin , δmax). The only differences are

(i) the shift interval (δmin , δmax) is used instead of an exact shift size δ, and 
(ii) Equation [11] is used to compute EARL (δmin, δmax), instead of using Equation [8] 

for computing ARL (δ). 
The proposed chart is designed to minimising EARL (δmin, δmax) in such a way that the 

EARL(0) = ARL0. Note that, when 0ρ =  the SSMGR-AI chart is like the basic SSMGR 
chart. 

Using the steps from 1 to 8, an optimization MATLAB program is written to compute 
the optimal parameters, as well as the minimum ARL (δ) and EARL (δmin, δmax) values. 
Tables 1 to 2 and Tables 3 to 4 report the optimal chart parameters (k, W1, W2), for different 

{ }5,7 ,n∈ , δ∈ (0.1, 0.3, 0.5, 0.7, 1, 1.5, 2) and ρ ∈ (0, 0.25, 0.5, 0.75, 0.95) that minimize 
the ARL(δ) and EARL (δmin , δmax) values, respectively of the SSMGR-AI chart. For 
example, when SSMGR-AI chart is optimally set to minimize ARL (0.7), i.e. δ = 0.7 , ρ = 
0.5 and 5n =  are specified, the value of the optimal parameters are (k, W1, W2 ) ∈ (1.5694, 
1, 5) (see Table 1). Similarly, to minimize the EARL (δmin , δmax) values, the values of the 
parameters are (k, W1, W2) ∈ (2.0690, 1, 56) for the optimal SSMGR-AI chart, when (δmin 

, δmax) ∈ (0.5, 1.0), ρ = 0.25, n = 7 and in-control ARL0 = 200 are specified (see Table 3).
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Figure 1. A flowchart showing the algorithm in computing the optimal parameters of the SSMGR-AI chart 
in minimizing ARL (δ)

Table 1
Optimal parameters of the SSMGR-AI chart for minimizing the ARL (δ) when ARL0= 200

δ ρ
n = 5 n = 7

k W1 W2 k W1 W2

0.1 0 2.2447 1 123 2.2447 1 123

0.25 2.2447 1 123 2.2447 1 123

0.5 2.2447 1 123 2.2447 1 123

0.75 2.2315 1 116 2.1888 1 96

0.95 1.9548 1 33 1.8786 1 23

RESULTS AND PERFORMANCE EVALUATION

Output ARLopt as the minimum ARL(δ) 
and the corresponding

k, W1 and W2 values are optimal 
parameters

Start

Set W2 = W2 +1

Is ARL(δ) < ARLmin?

ARLopt = ARLmin
and reset 

Is ARLmin < ARLopt?

No

Yes

Yes
ARLmin = ARL(δ)

Specify ARL0, n and δ. Then let 
W1 = 0, W2 = 0, ARLmin = ∞ and 
ARLopt = ∞.

Set W1 = W1 +1

Determine k by solving 
Equation [8] so that .

Compute  using 
Equation [8].

No
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Table 1 (Continued)

δ ρ
n = 5 n = 7

k W1 W2 k W1 W2

0.3 0 1.9849 1 38 1.9122 1 27

0.25 1.9733 1 36 1.8875 1 24

0.5 1.9199 1 28 1.8390 1 19

0.75 1.7904 1 15 1.7273 1 11

0.95 1.4674 1 3 1.4674 1 3

0.5 0 1.7449 1 12 1.6868 1 9

0.25 1.7273 1 11 1.6632 1 8

0.5 1.6868 1 9 1.6057 1 6

0.75 1.5694 1 5 1.5249 1 4

0.95 1.3857 1 2 1.3857 1 2

0.7 0 1.6057 1 6 1.5249 1 4

0.25 1.6057 1 6 1.5249 1 4

0.5 1.5694 1 5 1.4674 1 3

0.75 1.4674 1 3 1.3857 1 2

0.95 1.3857 1 2 1.3857 1 2

1.0 0 1.4674 1 3 1.4674 1 3

0.25 1.4674 1 3 1.3857 1 2

0.5 1.4674 1 3 1.3857 1 2

0.75 1.3857 1 2 1.3857 1 2

0.95 1.3857 1 2 1.3857 1 2

1.5 0 1.3857 1 2 1.3857 1 2

0.25 1.3857 1 2 1.3857 1 2

0.5 1.3857 1 2 1.3857 1 2

0.75 1.3857 1 2 1.3857 1 2

0.95 1.3857 1 2 1.3857 1 2

2.0 0 1.3857 1 2 1.3857 1 2

0.25 1.3857 1 2 1.3857 1 2

0.5 1.3857 1 2 1.3857 1 2

0.75 1.3857 1 2 1.3857 1 2

0.95 1.3857 1 2 1.3857 1 2
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Table 2
Optimal parameters of the SSMGR-AI chart for minimizing the ARL (δ) when ARL0 = 370

δ ρ
n = 5 n = 7

k W1 W2 k W1 W2

0.1 0 2.3990 1 195 2.3990 1 195

0.25 2.3990 1 195 2.3990 1 195

0.5 2.3990 1 195 2.3990 1 195

0.75 2.3661 1 168 2.3354 1 146

0.95 2.0866 1 45 2.0051 1 30

0.3 0 2.1201 1 53 2.3990 1 195

0.25 2.1081 1 50 2.3990 1 195

0.5 2.0470 1 37 2.3990 1 195

0.75 1.9256 1 20 2.3354 1 146

0.95 1.6217 1 4 2.0051 1 30

0.5 0 1.8702 1 15 2.0358 1 35

0.25 1.8570 1 14 2.0241 1 33

0.5 1.8112 1 11 1.9692 1 25

0.75 1.6975 1 6 1.8429 1 13

0.95 1.4913 1 2 1.5678 1 3

0.7 0 1.7263 1 7 1.6635 1 5

0.25 1.6635 1 5 1.6217 1 4

0.5 1.5678 1 3 1.5678 1 3

0.75 1.4913 1 2 1.4913 1 2

0.95 1.4913 1 2 1.4913 1 2

1.0 0 1.6217 1 4 1.5678 1 3

0.25 1.5678 1 3 1.5678 1 3

0.5 1.5678 1 3 1.4913 1 2

0.75 1.4913 1 2 1.4913 1 2

0.95 1.4913 1 2 1.4913 1 2

1.5 0 1.4913 1 2 1.4913 1 2

0.25 1.4913 1 2 1.4913 1 2

0.5 1.4913 1 2 1.4913 1 2

0.75 1.4913 1 2 1.4913 1 2

0.95 1.4913 1 2 1.4913 1 2
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δ ρ
n = 5 n = 7

k W1 W2 k W1 W2

2.0 0 1.4913 1 2 1.4913 1 2

0.25 1.4913 1 2 1.4913 1 2

0.5 1.4913 1 2 1.4913 1 2

0.75 1.4913 1 2 1.4913 1 2

0.95 1.4913 1 2 1.4913 1 2

Table 2 (Continued)

Table 3
Optimal parameters of the SSMGR-AI chart for minimizing the EARL (δmin , δmax) values when

 
ARL0 = 200

minδ maxδ ρ
n = 5 n = 7

k W1 W2 k W1 W2

0.1 0.5 0 2.1052 1 66 2.0690 1 56

0.25 2.0878 1 61 2.0690 1 56

0.5 2.0805 1 59 2.0442 1 50

0.75 2.0213 1 45 1.9733 1 36

0.95 1.7763 1 14 1.7273 1 11

0.5 1.0 0 1.6365 1 7 2.0690 1 56

0.25 1.6365 1 7 2.0690 1 56

0.5 1.6057 1 6 2.0442 1 50

0.75 1.5249 1 4 1.9733 1 36

0.95 1.3857 1 2 1.7273 1 11

1.0 1.5 0 1.4674 1 3 1.3857 1 2

0.25 1.4674 1 3 1.3857 1 2

0.5 1.3857 1 2 1.3857 1 2

0.75 1.3857 1 2 1.3857 1 2

0.95 1.3857 1 2 1.3857 1 2

1.5 2.0 0 1.6365 1 7 1.3857 1 2

0.25 1.6365 1 7 1.3857 1 2

0.5 1.6057 1 6 1.3857 1 2

0.75 1.5249 1 4 1.3857 1 2

0.95 1.3857 1 2 1.3857 1 2
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The performance of any control chart is measured by how rapidly the chart can detect a 
process shift. If an in-hand chart is faster than its competing charts in spotting a process 
shift after setting all charts in a similar in-control performance, then the in-hand chart has 
a better performance than the other charts. In this study, the ARL (δ) and EARL (δmin , 
δmax) criteria are used to measure the performance of the proposed SSMGR-AI chart, and 
compared to that of the EWMA-AI and the RS-AI charts (see Table 5-8). Abbas et al. (2014) 
used the simulation approach to study for ARL performance of the EWMA-AI chart. In 
this study, the researchers considered the optimal EWMA-AI chart in computing the ARL 
and EARL values. Ng et al. (2018) developed the RS-AI chart and showed that the RS AI 
chart outperformed the existing Synthetic-AI chart, and the performance of the seven-region 
RS-AI chart was better than that of the four-region RS-AI chart. Thus, this study considered 
only the seven-region RS-AI chart.

It is observed from Tables 5 and 6 that when  δ = 0.1 and ρ ∈ (0, 0.25, 0.5, 0.75), 

Table 4
Optimal parameters of the SSMGR-AI chart for minimizing the EARL (δmin , δmax) values when ARL0 = 370

minδ maxδ ρ
n = 5 n = 7

k W1 W2 k W1 W2

0.1 0.5 0 2.2660 1 106 2.2188 1 85

0.25 2.2660 1 106 2.2188 1 85

0.5 2.2425 1 95 2.2060 1 80

0.75 2.1779 1 70 2.1277 1 55

0.95 1.9256 1 20 1.8570 1 14

0.5 1 0 1.7734 1 9 1.6975 1 6

0.25 1.7514 1 8 1.6975 1 6

0.5 1.7263 1 7 1.6635 1 5

0.75 1.6217 1 4 1.5678 1 3

0.95 1.4913 1 2 1.4913 1 2

1 1.5 0 1.5678 1 3 1.4913 1 2

0.25 1.5678 1 3 1.4913 1 2

0.5 1.4913 1 2 1.4913 1 2

0.75 1.4913 1 2 1.4913 1 2

0.95 1.4913 1 2 1.4913 1 2

1.5 2 0 1.4913 1 2 1.4913 1 2

0.25 1.4913 1 2 1.4913 1 2

0.5 1.4913 1 2 1.4913 1 2

0.75 1.4913 1 2 1.4913 1 2

0.95 1.4913 1 2 1.4913 1 2
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the EWMA-AI chart performs better than the SSMGR-AI chart and RS-AI chart but 
when ρ > 0.75 , the performance of the proposed SSMGR-AI chart is significantly better 
compared to the EWMA-AI chart. For example, when δ = 0.1, ρ = 0.75 and n = 0.5 the 
ARL (0.1) for EWMA-AI chart is 36.41 which is smaller than that of the SSMGR-AI 
and the RS-AI charts, i.e. 50.31 and 66.39, respectively , while for ρ = 0.95, the ARL 
(0.1) of the SSMGR-AI chart is 10.94, which is smaller than that of the EWAM-AI and 
the RS-AI chart, i.e. 13.42 and 13.40, respectively (see Table 5). As the shift increases, 
the performance of the proposed chart is shown to be more outstanding compared to 
the EWMA-AI chart and the proposed chart outperforms the RS-AI chart for all size of 
mean shifts and correlation coefficients. When δ = 0.5, ρ = 0.75, n = 5, and ARL0 = 200, 
the ARL (δ) value of the SSMGR-AI chart is 1.92, but the corresponding values of the 
EWMA-AI chart and RS-AI chart are 3.85 and 4.02, respectively (see Table 5), which 
are greater than that of the SSMGR-AI chart. It is also observed from Table 5 that the 
performance of the proposed chart is better as n increases. It is also apparent in Table 5 
that the performance of the charts considered improve as ρ increases. 

In Table 6, for δ = 1, ρ = 0.5, n = 5, ARL0 = 370, the average run length values of 
the SSMGR-AI, EWMA-AI and RS-AI charts are 1.19, 2.26, 1.57, respectively, i.e. ARL 
(δ)SSMGR-AI < ARL (δ)RS-AI < ARL (δ)EWMA-AI. A similar trend is also noticeable when n = 
7 (see Table 6). On the other hand, in Tables 7 and 8, it is found that for any (δmin , δmax) 
combination, for n = 5 or 7, the EARL values of the SSMGR-AI chart are less than that 
of the EWMA-AI and RS-AI charts, except for the combination (δmin , δmax) = (0.1, 0.5) 
and ρ ≤ 0.5. When (δmin , δmax) = (0.1, 0.5) and ρ ≤ 0.5, the EWMA-AI chart shows a better 
performance than the other charts when ARL0s are set as 200 and 370 (see Tables 7 and 8). 

The speed in which the SSMGR-AI chart is quicker in detecting a process shift 
compared with the existing EWMA-AI and RS-AI charts is also shown in parentheses 
in Tables 5 – 8, in terms of percentages. A positive (negative) percentage for a certain 
chart means that the SSMGR-AI chart is quicker (slower) than the said chart in the 
detection of a shift. For example, in Table 5, when ARL0 = 200, n = 5, δ = 0.5 and ρ = 
0.25, the ARL(0.5) values of the EWMA-AI, RS-AI and SSMGR-AI charts are 6.75, 
7.68 and 3.91, respectively, where these ARL(0.5) values indicate that the SSMGR-AI 
chart is 72.6% and 96.4% quicker than the EWMA-AI and RS-AI charts, respectively, 
in detecting the shift δ = 0.5. Additionally, consider Table 8, where ARL0 = 370, n = 
7, (δmin , δmax) = (0.5, 1) and ρ = 0.5. Here, EARL(δmin , δmax) = 3, 3.03 and 1.5, for the 
EWMA-AI, RS-AI and SSMGR-AI charts, respectively, and these EARL(δmin , δmax) 
values show that the SSMGR-AI chart is 100% quicker than the EWMA-AI and RS-AI 
charts, in detecting shifts in the interval (δmin , δmax) = (0.5, 1).

The findings reveal that the proposed SSMGR-AI chart generally prevails over 
existing competing charts to detect process mean shifts, in terms of the ARL and EARL 
performance criteria. However, in the case of detecting small shifts (δ = 0.1) and ρ ≤ 
0.75, the EWMA-AI chart outperforms the SSMGR-AI chart.      
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Table 5

ARL (δ) values for the EWMA-AI, RS-AI and SSMGR-AI charts and the percentage (in parenthesis) in which 
the SSMGR-AI chart is quicker (positive %) or slower (negative %) than the EWMA-AI and RS-AI charts, in 
detecting shifts δ, when ARL0 = 200 

δ ρ
n = 5 n = 7

EWMA-AI RS-AI SSMGR-AI EWMA-AI RS-AI SSMGR-AI

0.1 0 59.28 (-37.3%) 108.03 (14.2%) 94.58 48.91(-34.9%) 90.69 (20.6%) 75.18
0.25 57.16 (-37.1%) 104.72 (15.3%) 90.81 47.11 (-34.2%) 87.38 (22.1%) 71.59
0.5 50.31 (-35.5%) 93.20 (19.6%) 77.94 41.23 (-31.1%) 76.14 (27.3%) 59.80
0.75 36.41 (-27.6%) 66.39 (32%) 50.31 29.44 (-20.4%) 51.64 (39.5%) 36.97
0.95 13.42 (22.7%) 13.40 (22.3%) 10.94 10.57 (39.6%) 13.40 (77%) 7.57

0.3 0 14.70 (16.5%) 20.77 (64.6%) 12.62 11.60 (32.9%) 15.14 (73.4%) 8.73
0.25 14.05 (19.5%) 19.55 (66.2%) 11.76 11.08 (36.3%) 14.25 (75.3%) 8.13
0.5 12.01 (30.4%) 15.85 (72.1%) 9.21 9.44 (48%) 11.60 (81.8%) 6.38
0.75 8.15 (58.9%) 9.67 (88.5%) 5.13 6.38 (76.2%) 7.19 (98.6%) 3.62
0.95 2.70 (95.7%) 2.10 (52.2%) 1.38 2.09 (78.6%) 2.10 (79.5%) 1.17

0.5 0 7.07 (69.2%) 8.12 (94.3%) 4.18 5.53 (85.6%) 6.06 (103.4%) 2.98
0.25 6.75 (72.6%) 7.68 (96.4%) 3.91 5.27 (88.2%) 5.72 (104.3%) 2.80
0.5 5.73 (83.7%) 6.33 (102.3%) 3.12 4.47 (96.1%) 4.73 (107.5%) 2.28
0.75 3.85 (100.5%) 4.02 (109.4%) 1.92 3.01 (100.7%) 3.09 (106%) 1.50
0.95 1.27 (25.7%) 1.08 (7%) 1.01 1.08 (8%) 1.08 (8%) 1.00

0.7 0 4.31 (97.7%) 4.55 (108.7%) 2.18 3.37 (101.8%) 3.49 (109%) 1.67
0.25 4.11 (98.6%) 4.32 (108.7%) 2.07 3.21 (101.9%) 3.32 (108.8%) 1.59
0.5 3.49 (101.7%) 3.63 (109.8%) 1.73 2.72 (95.7%) 2.77 (99.3%) 1.39
0.75 2.33 (87.9%) 2.35 (89.5%) 1.24 1.80 (63.6%) 1.80 (63.6%) 1.10
0.95 1.01 (1%) 1.00 (0%) 1.00 1.00 (0%) 1.00 (0%) 1.00

1 0 2.54 (92.4%) 2.58 (95.5%) 1.32 1.97 (75.9%) 1.97 (75.9%) 1.12
0.25 2.42 (90.6%) 2.45 (92.9%) 1.27 1.87 (78.1%) 1.87 (78.1%) 1.05
0.5 2.04 (75.9%) 2.05 (76.7%) 1.16 1.57 (57%) 1.57 (57%) 1.00
0.75 1.36 (33.3%) 1.36 (33.3%) 1.02 1.13 (13%) 1.13 (13%) 1.00
0.95 1.00 (0%) 1.00 (0%) 1.00 1.00 (0%) 1.00 (0%) 1.00

1.5 0 1.38 (34%) 1.38 (34%) 1.03 1.14 (12.9%) 1.14 (12.9%) 1.01
0.25 1.32 (29.4%) 1.32 (29.4%) 1.02 1.11 (11%) 1.11(11%) 1.00
0.5 1.16 (14.9%) 1.16 (14.9%) 1.01 1.04 (4%) 1.04 (4%) 1.00
0.75 1.01 (1%) 1.01 (1%) 1.00 1.00 (0%) 1.00 (0%) 1.00
0.95 1.00 (0%) 1.00 (0%) 1.00 1.00 (0%) 1.00 (0%) 1.00

2 0 1.05 (5%) 1.05 (5%) 1.00 1.01 (1%) 1.01 (1%) 1.00
0.25 1.04 (4%) 1.03 (3%) 1.00 1.00 (0%) 1.00 (0%) 1.00

0.5 1.01 (1%) 1.01 (1%) 1.00 1.00 (0%) 1.00 (0%) 1.00
0.75 1.00 (0%) 1.00 (0%) 1.00 1.00 (0%) 1.00 (0%) 1.00
0.95 1.00 (0%) 1.00 (0%) 1.00 1.00 (0%) 1.00 (0%) 1.00
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Table 6

ARL (δ) values for the EWMA-AI, RS-AI and SSMGR-AI charts and the percentage (in parenthesis) in which 
the SSMGR-AI chart is quicker (positive %) or slower (negative %) than the EWMA-AI and RS-AI charts, in 
detecting shifts, when ARL0 = 370

δ   ρ
n = 5  n = 7

EWMA-AI RS-AI SSMGR-AI EWMA-AI RS-AI SSMGR-AI
0.1 0 76.91 (-49.7%) 173.87 (13.7%) 152.87 62.11 (-46.8%) 141.58 (21.2%) 116.82

0.25 73.83 (-49.3%) 167.60 (15%) 145.75 59.61 (-46%) 135.57 (22.9%) 110.34
0.5 64.07 (-47.4%) 146.18 (20%) 121.84 51.75 (-42.2%) 115.58 (29.1%) 89.56
0.75 45.25 (-38.9%) 98.73 (33.4%) 74.02 36.11 (-30.7%) 74.10 (42.3%) 52.09
0.95 15.76 (14%) 13.40 (-3%) 13.82 12.28 (32%) 16.34 (75.7%) 9.30

0.3 0 17.34 (7.6%) 26.57 (64.8%) 16.12 13.53 (24.8%) 18.69 (72.4%) 10.84
0.25 16.54 (10.7%) 24.83 (66.2%) 14.94 12.90 (28.4%) 17.48 (73.9%) 10.05
0.5 14.04 (22.3%) 19.66 (71.3%) 11.48 10.92 (41.1%) 13.93 (80%) 7.74
0.75 9.38 (53.3%) 11.42 (86.6%) 6.12 7.27 (73.1%) 8.31 (97.9%) 4.20
0.95 3.00 (106.9%) 2.10 (44.8%) 1.45 2.32 (91.7%) 2.32 (91.7%) 1.21

0.5 0 8.09 (64.8%) 9.47 (92.9%) 4.91 6.27 (83.9%) 6.97 (104.4%) 3.41
0.25 7.70 (68.5%) 8.92 (95.2%) 4.57 5.96 (87.4%) 6.56 (106.3%) 3.18
0.5 6.50 (81.6%) 7.29 (103.6%) 3.58 5.03 (97.3%) 5.36 (110.2%) 2.55
0.75 4.32 (104.7%) 4.50 (113.3%) 2.11 3.35 (108.1%) 3.44 (113.7%) 1.61
0.95 1.36 (33.3%) 1.08 (5.9%) 1.02 1.12 (12%) 1.12 (12%) 1.00

0.7 0 4.85 (99.6%) 3.49 (43.6%) 2.43 3.76 (107.7%) 3.89 (114.9%) 1.81
0.25 4.62 (101.7%) 3.32 (45%) 2.29 3.58 (108.1%) 3.69 (108.1%) 1.72
0.5 3.90 (107.4%) 2.77 (47.3%) 1.88 3.03 (107.5%) 3.09 (111.6%) 1.46
0.75 2.59 (99.2%) 1.80 (38.5%) 1.30 1.99 (76.1%) 1.98 (75.2%) 1.13
0.95 1.02 (2%) 1.00 (0%) 1.00 1.00 (0%) 1.00 (0%) 1.00

1 0 2.83 (103.6%) 1.97 (41.7%) 1.39 2.18 (86.3%) 2.18 (86.3%) 1.17
0.25 2.69 (102.3%) 1.87 (40.6%) 1.33 2.07 (81.6%) 2.06 (80.7%) 1.14
0.5 2.26 (89.9%) 1.57 (31.9%) 1.19 1.73 (61.7%) 1.72 (60.7%) 1.07
0.75 1.48 (43.7%) 1.13 (9.7%) 1.03 1.18 (16.8%) 1.18 (16.8%) 1.01
0.95 1.00 (0%) 1.00 (0%) 1.00 1.00 (0%) 1.00 (0%) 1.00

1.5 0 1.49 (44.7%) 1.14 (10.7%) 1.03 1.19 (17.8%) 1.19 (17.8%) 1.01
0.25 1.42 (37.9%) 1.11 (7.8%) 1.03 1.15 (15%) 1.15 (15%) 1.00
0.5 1.23 (21.8%) 1.04 (3%) 1.01 1.06 (6%) 1.06 (6%) 1.00
0.75 1.02 (2%) 1.00 (0%) 1.00 1.00 (0%) 1.00 (0%) 1.00
0.95 1.00 (0%) 1.00 (0%) 1.00 1.00 (0%) 1.00 (0%) 1.00

2 0 1.08 (8%) 1.07 (7%) 1.00 1.01 (1%) 1.01 (1%) 1.00
0.25 1.06 (6%) 1.06 (6%) 1.00 1.01 (1.01%) 1.01(1.01%) 1.00
0.5 1.02 (2%) 1.02 (2%) 1.00 1.00 (0%) 1.00 (0%) 1.00
0.75 1.00 (0%) 1.00 (0%) 1.00 1.00 (0%) 1.00 (0%) 1.00
0.95 1.00 (0%) 1.00 (0%) 1.00 1.00 (0%) 1.00 (0%) 1.00
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Table 7

EARL (δmin, δmax) values for the EWMA-AI, RS-AI and SSMGR-AI charts and the percentage (in parenthesis) 
in which the SSMGR-AI chart is quicker (positive %) or slower (negative %) than the EWMA-AI and RS-AI 
charts, in detecting shifts, when ARL0 = 200

minδ
maxδ ρ

n = 5 n = 7

EWMA-AI RS-AI SSMGR
-AI EWMA-AI RS-AI SSMGR-

AI
0.1 0.5 0 20.26 (-16%) 31.44 (30.4%) 24.11 16.30 (-8.8%) 24.11(34.9%) 17.87

0.25 19.45 (-14.8%) 29.91 (31%) 22.83 15.61 (-7.2%) 22.88 (36%) 16.82
0.5 16.82 (-10%) 25.08 (34.3%) 18.68 13.46 (-1%) 19.03 (39.9%) 13.60
0.75 11.74 (5.4%) 16.05 (44.1%) 11.14 9.33 (17.8%) 12.06 (52.3%) 7.92
0.95 4.14 (66.9%) 4.45 (79.4%) 2.48 3.25 (72%) 3.35 (77.2%) 1.89

0.5 1.0 0 4.14 (84.8%) 4.50 (100.9%) 2.24 3.33 (-81.4%) 3.44 (-80.7%) 17.87
0.25 4.25 (100.5%) 4.27 (101.4%) 2.12 3.17 (-81.2%) 3.26 (-80.6%) 16.82
0.5 4.05 (128.8%) 3.57 (101.7%) 1.77 2.69 (-80.2%) 2.73 (-79.9%) 13.60
0.75 3.45 (171.7%) 2.32 (82.7%) 1.27 1.80 (-77.3%) 1.79 (-77.4%) 7.92
0.95 2.31 (131%) 1.04 (4%) 1.00 1.01 (-46.6%) 1.01 (-46.6%) 1.89

1.0 1.5 0 1.87 (65.5%) 1.87 (65.5%) 1.13 1.46 (40.4%) 1.46 (40.4%) 1.04
0.25 1.78 (60.4%) 1.78 (60.4%) 1.11 1.40 (35.9%) 1.39 (35%) 1.03
0.5 1.51 (43.8%) 1.51 (43.8%) 1.05 1.22 (20.8%) 1.22 (20.8%) 1.01
0.75 1.12 (10.9%) 1.12 (10.9%) 1.01 1.03 (3%) 1.03 (3.%) 1.00
0.95 1.00 (0%) 1.00 (0%) 1.00 1.00 (0%) 1.00 (0%) 1.00

1.5 2.0 0 1.17 (15.8%) 1.17 (15.8%) 1.01 1.05 (5%) 1.05 (5%) 1.00
0.25 1.14 (12.9%) 1.14 (12.9%) 1.01 1.00 (0%) 1.00 (0%) 1.00
0.5 1.06 (6%) 1.06 (6%) 1.00 1.01 (1%) 1.01 (1%) 1.00
0.75 1.00 (0%) 1.00 (0%) 1.00 1.00 (0%) 1.00 (0%) 1.00
0.95 1.00 (0%) 1.00 (0%) 1.00 1.00 (0%) 1.00 (0%) 1.00

Table 8

EARL (δmin, δmax) values for the EWMA-AI, RS-AI and SSMGR-AI charts and the percentage (in parenthesis) 
in which the SSMGR-AI chart is quicker (positive %) or slower (negative %) than the EWMA-AI and RS-AI 
charts, in detecting shifts (δmin , δmax), when ARL0=370

maxδ maxδ ρ
n = 5 n = 7

EWMA-AI RS-AI SSMGR-AI EWMA-AI RS-AI SSMGR-AI

0.1 0.5 0 24.83 (-28.8%) 44.38 (27.2%) 34.89 19.73 (-21.6%) 33.00 (-21.6%) 25.17

0.25 23.79 (-27.4%) 41.98 (28%) 32.79 18.86 (-19.9%) 31.13 (-19.9%) 23.54

0.5 20.40 (-22.7%) 34.48 (30.7%) 26.38 16.14 (-13.4%) 25.35 (-13.4%) 18.63

0.75 13.99 (-6.6%) 20.96 (39.9%) 14.98 10.99 (6.6%) 15.24 (6.6%) 10.31

0.95 4.71 (64.1%) 3.68 (28.2%) 2.87 3.69 (74.9%) 3.82 (74.9%) 2.11
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DISCUSSION ON THE IMPLEMENTATION OF THE PROPOSED SSMGR-AI 
CHART

In this section, a numerical example is given for a clear understanding on how the proposed 
SSMGR-AI chart can be employed. For this purpose, Statistical Analysis software (SAS) 
is used to generate one hundred (100) in-control observations (S, M) from a bivariate 
normal distribution, i.e. ( )2 2

2 0 , , , ,S S M S MN µ δσ µ σ σ ρ+ , and followed by one hundred (100) 
out-of-control observations (S, M) are generated from same underlying distribution, 
where δ = 0.5 , ρ = 0.25,  µS0 = µM = 0 and 2 2 1S Mσ σ= =  are considered. Table 9 shows 
that among the 27 bivariate samples, the first 15 samples are grouped from 100 in-control 
observations and the next 12 samples are grouped from 100 out-of-control observations. 
Here, each sample contains 5 observations. It is assumed that the SSMGR-AI chart is 
optimally designed by considering 0ARL 200= , δ = 0.5, n = 5 and the corresponding 
optimal parameters (k, W1, W2)  = (1.7273, 1, 11) are chosen from Table 1.

From Table 9, it is seen that for the first sample, i.e. when i = 1 , 
1

*ˆ 0.089,Sµ =  which is 
computed using Equation [4]. Since [ ]

1

*ˆ LCL,UCLSµ ∈  = [‒0.748, 0.748] the first sample is 
conforming. In a similar manner, the procedure is repeated for samples 2 ‒ 11 (see Table 
9). At sample number 12, as ( ) [ ]

2

*ˆ 0.878 0.748,0.748Sµ = ∉ − , the sample is known as non-
conforming and hence, Y1 = 12 is obtained. Since Y1 > W2, the process is considered as 

maxδ maxδ ρ
n = 5 n = 7 

EWMA-AI RS-AI SSMGR-AI EWMA-AI RS-AI SSMGR-AI

0.5 1.0 0 4.79 (90.1%) 5.10 (102.4%) 2.52 3.72 (100%) 3.84 (100%) 1.86

0.25 4.56 (92.4%) 4.82 (103.4%) 2.37 3.55 (100.6%) 3.65 (100.6%) 1.77

0.5 3.86 (99%) 4.00 (106.2%) 1.94 3.00 (100%) 3.03 (100%) 1.50

0.75 2.57 (93.2%) 2.58 (94%) 1.33 1.98 (72.2%) 1.97 (72.2%) 1.15

0.95 1.06 (6%) 1.06 (6%) 1.00 1.01 (1%) 1.01 (1%) 1.00

1.0 1.5 0 2.07 (80%) 2.06 (79.1%) 1.15 1.59 (50%) 1.58 (50%) 1.06

0.25 1.97 (74.3%) 1.96 (73.5%) 1.13 1.51 (45.2%) 1.50 (45.2%) 1.04

0.5 1.65 (54.2%) 1.64 (53.3%) 1.07 1.30 (27.5%) 1.29 (27.5%) 1.02

0.75 1.16 (14.9%) 1.16 (14.9%) 1.01 1.04 (4%) 1.04 (4%) 1.00

0.95 1.00 (0%) 1.00 (0%) 1.00 1.00 (0%) 1.00 (0%) 1.00

1.5 2.0 0 1.24 (22.8%) 1.23 (21.8%) 1.01 1.07 (7%) 1.07 (7%) 1.00

0.25 1.19 (17.8%) 1.19 (17.8%) 1.01 1.05 (5%) 1.05 (5%) 1.00

0.5 1.09 (9%) 1.09 (9%) 1.00 1.02 (2%) 1.02 (2%) 1.00

0.75 1.00 (0%) 1.00 (0%) 1.00 1.00 (0%) 1.00 (0%) 1.00

0.95 1.00 (0%) 1.00 (0%) 1.00 1.00 (0%) 1.00 (0%) 1.00

Table 8 (Continued)
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in-control. Other non-conforming samples are detected at samples number i = 18, 22, 25, 
26 and 27. It follows that Y2 = 6, Y3 = 4, Y4 = 3 and Y5 = Y6 = Y1. Figure 2 shows that the 
first out-of-control signal appears at sample number 27 as Y5  ≤ 1 and Y6  ≤ 11 (see Figure 
2) and the control chart’s statistics 

26

*ˆSµ  and 
27

*ˆSµ both  fall on the same side of the target 
mean value of the SSMGR-AI chart. Therefore, corrective actions should be taken to 
bring the out-of-control process back into the in-control situation. Examples of corrective 
actions include removal of assignable causes, such as inferior materials, operator errors 
and faulty parts.

Figure 2. SSMGR-AI chart for the numerical example

Table 9

Bivariate observations (S, M)
 
generated from normal distribution ( )2 2

2 0 , , , ,S S M S MN µ δσ µ σ σ ρ+ , where 0 0S Mµ µ= =  
2 2 1S Mσ σ= = , δ = 0.5 , for the SSMG-AI chart with optimal parameters (k, W1, W2) = (1.7273, 1, 11) obtained 

from Table 1

Sample 
number, 
i

S1 S2 S3 S4 S5 M1 M2 M3 M4 M5 ˆ
iSµ ˆ

iMµ *ˆ
iSµ

1 -0.182 0.278 1.215 -1.399 0.316 1.228 1.215 -0.834 -1.276 -1.204 0.046 -0.174 0.089

2 0.159 -0.012 1.502 -0.095 0.465 0.536 -0.042 -0.871 0.195 1.516 0.404 0.267 0.337

3 0.162 0.089 -0.698 -0.295 1.980 1.630 -0.863 0.761 0.478 -0.109 0.248 0.379 0.153

4 -0.187 0.595 -0.617 -0.832 -0.271 -0.721 1.938 -1.529 -0.025 0.464 -0.262 0.026 -0.269

5 -0.367 1.302 0.216 0.986 0.860 -0.893 -0.524 0.619 0.762 0.261 0.599 0.045 0.588
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Table 9 (Continued)

Sample 
number, 
i

S1 S2 S3 S4 S5 M1 M2 M3 M4 M5
ˆ

iSµ ˆ
iMµ *ˆ

iSµ

6 0.598 1.783 -0.893 0.902 -1.681 -0.476 -0.572 -1.845 0.425 -0.338 0.142 -0.561 0.282

7 -0.867 1.071 1.074 -0.109 0.378 -0.047 1.612 -0.378 -0.011 -1.087 0.309 0.018 0.305

8 0.101 -0.621 1.941 0.949 -0.714 1.903 0.968 -1.404 1.036 0.675 0.331 0.636 0.172

9 0.336 -0.585 0.486 -0.964 0.808 1.015 0.273 0.861 -1.425 -0.105 0.016 0.124 -0.015

10 -0.308 -0.470 0.005 0.270 -0.589 -0.779 -0.915 -0.009 -0.321 1.133 -0.218 -0.178 -0.174

11 0.833 1.304 -0.879 1.194 -0.234 2.473 1.216 -0.231 0.478 -0.840 0.443 0.619 0.288

12 1.792 0.145 -0.173 1.696 1.718 -0.168 0.231 -0.305 1.993 1.414 1.036 0.633 0.878*

13 -0.003 0.733 -1.179 1.302 1.031 -0.078 0.111 -2.008 -0.449 1.959 0.377 -0.093 0.400

14 1.294 0.533 0.536 -0.246 -0.142 0.575 1.776 1.943 -0.290 -1.852 0.395 0.430 0.287

15 0.846 -0.985 -0.700 0.155 0.280 0.133 0.385 0.993 0.266 0.674 -0.081 0.490 -0.203

16 -0.810 1.187 0.254 0.567 -0.102 -0.878 -0.718 2.888 0.658 -0.410 0.219 0.308 0.142

17 0.490 1.730 -0.034 0.043 0.193 0.046 0.947 -1.152 -0.230 -0.196 0.485 -0.117 0.514

18 1.255 -1.281 2.459 0.597 1.829 -0.940 -0.591 1.388 0.350 1.327 0.972 0.307 0.895*

19 -0.587 0.559 1.491 0.624 0.745 -0.970 0.663 1.838 0.183 1.059 0.566 0.555 0.428

20 -0.599 1.040 1.017 -2.149 1.463 0.497 0.587 0.575 -1.335 -1.053 0.154 -0.146 0.191

21 1.623 -0.773 0.589 0.923 -0.025 -0.136 -0.897 -0.028 -0.334 2.224 0.467 0.166 0.426

22 0.813 0.064 1.526 1.398 -0.454 -0.197 -0.877 -1.962 1.086 -1.161 0.669 -0.622 0.825*

23 0.364 0.392 -0.746 0.893 -0.660 0.716 -0.339 -1.079 0.557 -0.264 0.049 -0.082 0.069

24 -0.260 0.710 -0.581 1.123 2.136 0.670 0.000 -1.334 -0.387 0.407 0.625 -0.129 0.658

25 1.735 -0.165 1.733 -0.556 0.238 -1.150 -0.633 -0.875 0.781 -1.261 0.597 -0.628 0.754*

26 1.545 1.094 0.335 1.738 1.462 -2.174 0.166 -0.347 1.518 2.028 1.235 0.239 1.175*

27 1.245 -0.007 0.931 2.439 0.781 -0.390 -1.631 -0.230 0.477 1.519 1.077 -0.051 1.090*

CONCLUSION

This research has proposed the SSMGR-AI chart which is based on the SSMGR charting 
concept of Gadre et al. (2010) to detect shifts in the process mean by using auxiliary 
information. Information from the study and auxiliary variables is used to derive the 
charting statistics of the SSMGR-AI chart, in order to monitor the mean shifts effectively. 
Results show that information from both these variables improves the sensitivity of the chart 
in detecting process mean shifts. The SSMGR-AI chart reduces to the standard SSMGR 
chart when ρ = 0. The construction procedure, optimal design, performance evaluation and 
implementation of the chart are elaborated in this study. Additionally, we have presented 
the methodology and tables of optimal parameter combinations of the SSMGR-AI chart. 
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The optimization algorithm developed enables the optimal SSMGR-AI chart in minimizing 
the ARL1 and EARL1 values, for known and unknown shift sizes, respectively.

A numerical example is also given to illustrate the construction and implementation of 
the proposed chart. In terms of the ARL and EARL criteria, the SSMGR-AI chart is shown 
to perform significantly better than the existing RS-AI chart in detecting all sizes of mean 
shifts, while the EWMA-AI chart performs better in detecting small shifts. However, for 
moderate and large shifts, the SSMGR-AI chart outperforms the EWMA-AI chart as the 
former has lower ARL1 and EARL1 values than the latter. Thus, the SSMGR-AI chart is 
deemed as an effective AI chart among existing AI charts, for monitoring the process mean.

As this study is based on the univariate SSMGR-AI chart, future research can be done 
on the construction of a multivariate SSMGR-AI chart for detecting shifts in the process 
mean vector. Furthermore, the proposed control charting concept can be extended to the 
monitoring of process variability or a simultaneous monitoring of the process mean and 
variance.
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