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ABSTRACT
Hyperspectral Imaging (HSI) is one of the emerging techniques used in plant phenotyping 
as it carries abundant information and is non-invasive to plants. However, factors like 
illumination effect and high-dimensional spectral features need to be solved to attain 
higher accuracy of plant trait analysis. This research explored and analysed spectral 
normalisation and dimensionality reduction methods. The focus of this paper is twofold; 
the first objective was to explore the Standard Normal Variate (SNV), Least Absolute 
Deviations (L1) and Least Squares (L2) normalisation for spectral correction. The second 
objective was to explore the feasibility of Principal Component Analysis (PCA) and 
Analysis of Variance Fisher’s Test (ANOVA F-test) for spectral dimensionality reduction 
in spectral discriminative modelling. The analysis techniques were validated with HSI data 
of maise plants for early detection of water deficit stress response. Results showed that 
SNV performed the best among the three normalisation methods. Besides, ANOVA F-test 
outperformed PCA for the band selection method as it improved the trait assessment on 
the water deficit response of maise plants.   

Keywords: Analysis of variance fisher’s test, hyperspectral imaging, plant phenotyping, principal component 

analysis, standard normal variate

INTRODUCTION

The advanced technology in plant genomics 
is important for breeding more sustainable 
crops. However, the ability to dissect traits' 
genetics depends on plant phenotyping 
development. Among the techniques 
developed for plant phenotyping are visible, 
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fluorescence imaging, infrared imaging, hyperspectral Imaging (HSI), and 3D structural 
tomography.

Visible imaging was performed to plant phenotyping by analysing digital images 
with spectral information from 400 nm–700 nm. The advantage of this technique is low 
implementation cost and maintenance fee. Despite that, there are limitations like restricted 
analysis of plant physiology and difficulty caused by overlapping leaves. Fluorescence 
imaging contradicts visible imaging by detecting fluorescence signals (250 nm–700 
nm) emitted from plants after exposure to visible or UV light. This method detects plant 
diseases (Balachandran et al., 1997; Lohaus et al., 2000). In general, every object emits 
infrared radiation, allowing infrared imaging possible for plant phenotyping (Kastberger 
& Stachl, 2003). Infrared radiation ranges from 700 nm to 1000 nm. The wide range will 
require a high computational cost. Therefore, many implementations of infrared imaging 
only focus on a certain band range. For instance,  thermal imaging utilises spectra from 
3–5 µm and 7–14 µm for detecting biotic and abiotic stresses (Chaerle & van der Straeten, 
2000; Nilsson, 1995). Near-infrared (NIR) is another way to utilise infrared radiation. It 
ranges from 700 nm–1400 nm and has a higher reflective intensity on healthy green plants 
(Yang et al., 2013). The benefit of NIR imaging is that radiation can be transmitted through 
leaves that overcome difficulties visible imaging faces.

Hyperspectral imaging (HSI) is a technique that combines both visible and NIR 
imaging methods. The downside of visible and NIR imaging can be overcome mutually. 
Furthermore, HSI can divide images into bands, enabling analysis of the plant’s condition 
using Vegetation Indices (VI). Ihuoma and Madramootoo (2019) compared a few vegetation 
indices extracted from hyperspectral images to monitor the water stress level in tomato 
plants and found that Water Index (WI), Photochemical Reflectance Index centred at 550 
nm (PRI550), and Optimised Soil Adjusted Vegetation Index (OSAVI) are the most sensitive 
indices in distinguishing plants with 80% or less available water content (AWC). Besides, 
the popular NDVI and RENDVI were studied by Andaryani et al. (2019) to investigate 
the drought level in the agriculture field. These studies show that water-sensitive VIs can 
detect drought stress to a certain extent. However, these studies do not consider linearity 
and scattering of illumination. Thus, solely computing VIs from hyperspectral data might 
not be the most optimum method for identifying water-stressed plants. In different studies, 
HSI has been used to estimate leaf water content (LWC) and the result is compared with 
LWC value measured destructively (Ge et al., 2016; Pandey et al., 2017). However, this 
approach is undesirable as many samples will be destroyed for long-duration studies. In 
contrast, the comparison is made between hyperspectral images of the control and water-
deficit groups (Asaari et al., 2019) by computing the Euclidean Distance (ED) of the 
hyperspectral spectrum with reference from the control group.

Although HSI has many edges over other imaging techniques, it is still far from 
perfection. The illumination effect is still one of the difficulties faced by plant phenotyping. 
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Besides, the high dimension of hyperspectral images also leads to high computational costs. 
This study performs quantitative analysis for eliminating the illumination effect using 
SNV, L1, and L2 normalisation techniques to tackle these concerns. SNV is considered 
the effective method to reduce the illumination effect (Asaari et al., 2018). Even though 
SNV shows prominent results in mitigating linear illumination effect (Mohd Asaari et al., 
2018; Vigneau et al., 2011). One of the downsides is the inability to extract VIs from SNV 
spectra as the values are not bounded in the positive range, thus preventing direct linkage 
between the normalised wavelength and the biophysical properties of the plant. It is worth 
mentioning that, apart from SNV, Savitzky-Golay (SG) filter (Fletcher & Turley, 2018; Liu 
et al., 2019) and Multiple Scattering Correction (MSC) (Geladi et al., 1985; Isaksson & Næs, 
1988) are other popular spectral pre-treatment methods. SNV and MSC are both spectral 
pre-processing inspired by chemometrics. The difference between SNV and MSC is that 
MSC requires a reference spectrum deemed unaffected by noises (Li et al., 2018). In most 
HSI analyses, the performance of MSC is very dependent on the average spectrum as it is 
used as the reference spectrum, which is difficult to excess, especially on articulated plant 
structures. In this context, SNV performs better than MSC (Mishra, Lohumi, et al., 2020) 
as the average spectrum is not out of the noise. On the other hand, the SG filter is used 
to smoothen hyperspectral data from the data aspect without considering chemometrics. 
Thus, pure smoothing ignores the multiplicative and additive effect when illumination is 
reflected from the plant surface.

Another popular method in pre-processing of hyperspectral data is L1 and L2. In a 
recent study (Zhuang & Ng, 2020), L1 normalisation was used to remove Gaussian noise 
from hyperspectral images. On the other hand, Feng et al. (2022) used L2 normalisation to 
improve feature robustness towards impulse noise before feeding data into the deep learning 
model. Even though these studies show satisfactory results for respective objectives, the 
data used are remote sensing hyperspectral images. To the author’s knowledge, no study 
has been done using L1 and L2 normalisation on proximal hyperspectral images thus far. 
In recent work (Abenina et al., 2022), HSI analysis was performed to study plant traits 
by comparing the SG filter, MSC and SNV. The results showed that SNV performs best 
among all. Thus, only SNV is implemented here to compare with L1 and L2 to see if the 
proposed normalisation method works better than the current best method.

Besides the illumination issues, another common difficulties researchers face when 
dealing with a hyperspectral image is the curse of dimensionality, also known as Hughes 
Phenomenon (Hughes, 1968). The high number of bands carried by hyperspectral images 
always requires high computational power and time for analysis. To tackle these concerns, 
two dimension reduction methods, PCA and ANOVA F-test (Asaari et al., 2019; Calzone 
et al., 2021; Pandey et al., 2017), are explored to quantify their feasibility for improving 
spectral discrimination. Even though these two methods serve the same purpose, the 
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dimensionally reduced data characteristic differs. Principal Components (PCs) generated 
by PCA are non-interpretable, whereas ANOVA F-test works more directly by selecting the 
most varied bands. This study compares the effectiveness of the two methods in dimension 
reduction and determines if they can be used as an alternative to each other.

This study aims to address two objectives. The first objective involves evaluating the 
suitability of two proposed normalization methods, L1 and L2 in comparison to the current 
best method, SNV normalization, for HSI analysis. The second objective entails comparing 
the water stress detection efficiency of two dimension reduction methods, namely PCA 
and ANOVA F-test. The more effective normalization and dimension reduction method 
will be determined via computation of Euclidean Distance (ED) between spectra of two 
different groups of maise plants; healthy and water deficit groups.

METHODOLOGY

In this work, the images of maise plants were obtained from Asaari et al. (2018), in which 
imaging was done in the VIB-UGent Center greenhouse in Ghent, Belgium. Pushbroom 
hyperspectral camera with visible to NIR detection range was coupled with an array of 
3x3 halogen lamps, each placed at the same level as the camera. During image acquisition, 
maise plants were transferred via a high-throughput phenotyping platform (HTPPP) and 
individually snapped in dedicated enclosed cabins.

The obtained data were separated into two sets, where the first dataset contains 
hyperspectral images of five maise plants captured at five different platform heights. 
Meanwhile, the second dataset contains hyperspectral images of ten maise plants, 
categorised into control and water-deficit groups, followed consecutively for nine days. 
Hyperspectral images captured have resolutions of 510 x 328 pixels, and each pixel has 
194 spectral bands ranging from 400 nm to 1000 nm.

After the images dataset was prepared, white and dark reference was carried out to 
convert reflectance intensities into values between 0 and 1 followed by removal of bands 
with inconsistent values. After that, vegetation pixels were segmented by calculating every 
pixel's Normalised Difference Vegetation Index (NDVI). Pixels with NDVI values lower 
than 0.3 were removed. 

To achieve the first objective spectral normalisation was performed after the pre-
processing steps to reduce the illumination effects. SNV, L1, and L2 normalisations were 
carried out separately on both datasets. For the first dataset, clustering was used to classify 
normalised spectra into clusters. Five graphs representing different platform heights were 
studied for each spectra type. For the second dataset, spectra similarity measurement 
was computed between the mean spectra of maise plants and daily reference. Results 
were presented in error bar graphs to determine the duration for complete discrimination 
between control and water-deficit groups. In achieving the second objective, the normalised 
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spectra of the second dataset were further processed by dimension reduction using PCA 
and ANOVA F-test separately. Then, spectra similarity measurement was performed again 
to determine the duration of attaining the complete separation of control and water-deficit 
groups. Figures 1 and 2 show the flowchart from image acquisition to plant discrimination. 

White and Dark Reference

Removal of Noisy Band

Segmentation of 
Vegetation Pixels

SNV 
Normalization

L2
Normalization

L1
Normalization

K-means
Clustering

Start

End

K-means

Figure 1. Process flow for the first dataset

Image Pre-processing

There were three steps in this stage. The first was a white and dark reference, a 
standardisation method common in hyperspectral images study (Geladi et al., 2004; Ortaç 
et al., 2016; Shaikh et al., 2021). White reference is obtained by capturing an image when 
placing a high reflectance (~99%) board perpendicularly opposite the camera. On the other 
hand, dark reference is the image captured when the shutter or light is off. Reflectance was 
calculated using Equation 1:

        (1)

where R is reflectance, I is original image intensity, D is a dark reference, and W is a white 
reference.

White and Dark Reference

Removal of Noisy Band

Segmentation of 
Vegetation Pixels

SNV 
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L2
Normalization

L1
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Spectral Similarity 
Measurement via 
ED Computation

Start
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Spectral Similarity 
Measurement via 
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Figure 2. Process flow for the second dataset
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Noisy bands fluctuate inconsistently due to different kinds of noise like thermal, 
instrumental, and photon noise, thus containing more outlying values. In this work, the 
bands below 500 nm and above 810 nm are visibly noisy and were removed, leaving spectra 
with 111 spectral bands after the process.

Since leaves of maise plants did not just form the original hyperspectral image but also 
unnecessary components like pots and platforms, segmentation of vegetation pixels was 
required. NDVIs of all pixels were calculated. Then, the threshold was set to 0.3. It means 
pixels with NDVI of more than 0.3 were deemed to belong to the maise plant's leaves. 
Therefore, only leaves remain for further analysis after segmentation.

Spectral Normalisation

After the above pre-processing steps, normalisation was needed to reduce the illumination 
effect. The ideal intensity of light received was when the whole object’s surface was 
perpendicular to the sensor. However, in real life, the leaves of maise plants face different 
directions. In addition, leaf surfaces were not smooth, causing light to scatter in all 
directions.

When doing vector (L1 and L2) normalisation, all spectra were treated as vectors with 
values of all bands as components. Equations 2 and 3 are norm computations for L1 and 
L2, respectively. Vector normalisation changed the spectrum into a unit vector by Equation 
4, and only the magnitude of the spectrum was transformed. All normalised spectra had 
uniform magnitude, thus minimising the illumination effect. 

    
          (2)

     
          (3)

      
          (4)

Other than vector normalisation, SNV normalisation was also applied in this research 
to compare the performances of different normalisation methods. SNV normalisation 
has been implemented in recent hyperspectral studies (Abenina et al., 2022; Mishra et 
al., 2020; Polder, et al., 2020) and is deemed the effective way to mitigate the scattering 
effect. It is aimed to transform the spectrum to have a mean of 0 and a standard deviation 
of 1 using Equation 5:

     (5)

where is the mean, and is the standard deviation of data, respectively.
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The noise on received spectra can be illustrated as Equation 6, where 
is said to be light reflectance at a reference. Besides, β refers to the illumination effect 
caused by the inclination of leaves and the distance between the camera and the maise plant. 
Moreover, α refers to specular reflectance, the additive effect on the reference spectrum. 
             
          (6)

By some rearrangement, Equation 7 was obtained. By comparing Equations 5 and 7, 
it was not hard to notice that α refers to the spectrum mean, and β refers to the standard 
deviation. Therefore, from this theory, SNV normalisation can be used to yield noiseless 
spectra.

                                                               
          (7)

Spectral Discrimination

The classification was performed on normalised spectra to determine if a spectra type has 
high efficiency in water stress detection. For the first dataset, the classification method 
performed was k-means clustering (Ranjan et al., 2017). Built-in k-means function was 
used, and the algorithm takes in a few parameters: the number of clusters (k) and maximum 
iterations. After referring to (Asaari et al., 2019), the k value was set to 6. Maximum iteration 
was set to 500 as well to prevent the infinite running of code. A bar graph with the number 
of pixels in each cluster was presented for each platform height. The variation across 
different bar graphs was studied to see if platform heights affect normalisation performance.

For the second normalised dataset, spectra similarity was measured between daily 
reference and mean spectrum of each maise plant by calculating the ED between them. 
The formula for ED is shown in Equation 8. After the ED was computed, the daily mean 
and standard deviation were calculated from the daily ED obtained according to control 
and water-deficit groups. Then, the result was shown as error bar graphs in which no 
overlapping of the error bar indicates complete discrimination of maise plants experiencing 
water stress. 

                                                   (8)

Dimensionality Reduction

In this work, each hyperspectral image has around 10000 vegetation pixels, and each 
pixel has 111 bands. The computational cost was very high for such a large amount of 
data. Therefore, PCA and ANOVA F-test were applied on the normalised second dataset 
to see if improvement in the duration of water stress detection happened after the spectra 
dimension was reduced.



Pertanika J. Sci. & Technol. 31 (4): 1827 - 1845 (2023)1834

Lin Jian Wen, Mohd Shahrimie Mohd Asaari and Stijn Dhondt

Each day's plant was represented by its mean spectrum when implementing PCA. 
Besides, the daily reference spectrum will also be computed for the control and water-deficit 
groups. All these spectra will be combined as samples for PCA. There are a total of 108 
rows with 111 columns. In MATLAB, PCA was applied using the built-in PCA function. 
The first few PCs were used to check the effect of PCA.

In this work, the spectral band used for analysis was from 400 nm to 810 nm with a 
bandwidth of 3.1 nm. Even though information can be extracted from every band, not all 
bands contributed the same to water stress detection. ANOVA F-test uses the average daily 
spectrum as input. The built-in function, anova1, was used to compute the daily F-value for 
each band. Bands with the highest 10% of F-value were elected for each day. The selected 
bands were used for spectra similarity measurement to determine the duration taken for 
discrimination between control and water-deficit groups.

RESULTS AND DISCUSSION

The effect of SNV, L1, and L2 normalisation on different platform heights was evaluated 
to satisfy the first objective. K-means clustering was used to segregate results into different 
clusters displayed in the bar graph. Besides, the outcome of water stress detection using 
different spectra types was evaluated by calculating ED between spectra. The error bar 
was displayed for all nine days of the experiment. However, only the first seven days 
were studied for water stress detection as maise plants in the water-deficit group were not 
irrigated in these seven days.

PCA and ANOVA F-test were applied on normalised spectra separately to realise the 
second objective. Then, spectra similarity measurement with ED has performed again on 
the dimensionally reduced data. The same procedure of water stress analysis for the first 
objective was done again to determine the effect of each dimension reduction method.

Image Processing

Figure 3 shows spectra where bands below 500 nm and above 810 nm were removed. 
The variance of spectra decreases from 500 nm to around 650 nm, and after 700 nm, the 
variance of spectra increases and remains constant after around 750 nm. The number of 
spectral involved is 111, with 3.1 nm as the width of each band.

Figures 4 and 5 show the hyperspectral image before and after segmentation using 
threshold NDVI of 0.3, as stated in (Gandhi et al., 2015) as best for vegetation analysis. 
Figure 4's image background includes soil, pots, and a platform base. Therefore, the NDVI 
of these pixels will be lower than 0.3, representing non-vegetative pixels. The remaining 
spectra are around 10000 pixels for each maise plant, as shown in Figure 5. These pixels 
will be considered for further analysis.
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Analysis of Spectral Normalisation of 
HSI of Maize Plant at Different Imaging 
Platform Heights

After normalisation using SNV, L1, and 
L2, the normalised spectra underwent 
classification using k-means clustering 
to determine if normalisation performs 
differently according to platform heights. 
MATLAB built-in k-means function has a 
parameter of 6 as the k value and 500 as 
the maximum iteration. Results of k-means 
clustering on SNV, L1, and L2 spectra are 
shown in Figures 6, 7, and 8, respectively. 
From Figures 6 and 8, it is observed that 
cluster 5 and 6 has the greatest number 
of pixels. Figure 7 shows that most pixels 
belong to clusters 3, 4, and 5. Besides, 
the graph pattern is consistent across 
four heights for all three spectrum types. 
It proves normalisation has consistent 
efficiency from 0 mm to 450 mm platform 
heights. The findings align with the study 
conducted by (Witteveen et al., 2022), which 
also observed normalization is not impacted 
by variations in distance.

Raw Spectra
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Figure 3. Spectra after removal of noisy bands

Figure 4. Hyperspectral image presented in RGB

Figure 5. Hyperspectral image after segmentation
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Figure 7. K-means clusters shown in the bar graph for L1 normalised spectra at different imaging platforms: 
(a) 0 mm, (b) 250 mm, (c) 350 mm, and (d) 450 mm

Figure 6. K-means clusters shown in the bar graph for SNV normalised spectra at different imaging platforms: 
(a) 0 mm, (b) 250 mm, (c) 350 mm, and (d) 450 mm

(a) SNV 0 mm (b) SNV 250 mm

(c) SNV 350 mm (d) SNV 450 mm

(a) L1 0 mm (b) L1 250 mm

(c) L1 350 mm (d) L1 450 mm
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Figure 8. K-means clusters shown in the bar graph for L2 normalised spectra at different imaging platforms: 
(a) 0 mm, (b) 250 mm, (c) 350 mm, and (d) 450 mm

(a) L2 0 mm (b) L2 250 mm

(c) L2 350 mm (d) L2 450 mm

Analysis of Spectral Normalisation on Water Deficit Response in Maize Plants

After proving that normalisation works the same at different platform heights, spectra 
similarity measurement was performed for raw, SNV, L1, and L2 normalised spectra. Daily 
reference was first computed by getting the mean of maise plants in the control group. Then, 
the ED between the mean spectrum of maise plants and daily reference was calculated. 
Daily ED values were categorised according to control and water-deficit groups. Then, 
daily mean and standard deviation were obtained from these ED values and presented in 
an error bar graph. Note that in this study, no Cross-Validation (CV) is performed as only 
computation of ED between mean reference spectrum is done without any parameter tuning 
required. CV is generally used when developing a machine learning model, which requires 
the dataset to be split into training and testing sets. After the CV's k-folds are performed, 
each fold's parameter will be averaged and used as model parameters. In the ED calculation, 
the error bars’ lower and upper boundaries represent the minimum and maximum of each 
sample group, respectively. Thus, the complete separation of the error bar is sufficient to 
indicate drought plants among samples.

From Figure 9(a), error bar analysis similar to (Asaari et al., 2019) has been conducted. 
The duration taken for raw spectra to separate control and water-deficit groups is 7 days, 
while for SNV spectra, it takes 4 days. On the contrary, both vector normalisations, L1 and 
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L2, fail to detect maise plants experiencing water stress within the first 7 days. It can be 
noticed that the red error bar, which represents the difference between water-deficit maise 
plants and daily reference, increases consistently from day 2 to day 7 for SNV. It shows that 
SNV-normalised spectra respond according to the plant’s water level. However, a closer 
observation of Figure 9 (c-d) shows an unusually large increment of the control error bars 
from day 4 to day 6. It causes the error bar of both groups to “stick” with each other and 
not be able to discriminate in the first 7 days completely. Therefore, from Figure 9, it can 
be concluded that spectra after being SNV normalised are better compared to L1 and L2 
normalised spectra in detecting water deficit stress response in maise plants. 

Figure 9. Spectra similarity result on (a) raw, (b) SNV, (c) L1 and (d) L2 spectra with blue error bar representing 
the control group and red error bar representing the water deficit group.

(c) L1 (d) L2

(a) Raw (b) SNV

Analysis of Dimensionality Reduction

The second objective of this work studies the effect of dimension reduction methods, 
PCA and ANOVA F-test in water stress detection. Both methods have different ways of 
implementation. However, they serve the same purpose: to reduce the computational cost 
of analysis.
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Results of spectra similarity measurement after PCA is applied and shown in Figures 
10 and 11 for each spectra type when 1 and 10 PCs were selected. When comparing 
with Figure 9, graphs with 10 PCs are very similar to the spectra similarity result before 
dimension reduction. On the other hand, graphs using only 1 PC show worse results when 
compared with spectra similarity results before dimension reduction. Therefore, it can 
be deduced that PCA does not affect the duration taken for water stress detection when 
enough PCs are used. A closer look at Figure 10 shows that when 1 PC is used for spectra 
similarity measurement, the result is not as good as another two. It is due to the variance 
in the first PC being insufficient “replicate” that of the whole data set. Similar scenarios 
have been observed in studies conducted by (Fernández et al., 2022; Ren et al., 2020; Vu et 
al., 2016) where multiple PCs were utilized for machine learning computation. Therefore, 
the optimum number of PCs used in this work is 10. 

(a) First PC from Raw Spectra (b) First 10 PCs from Raw Spectra

(c) First PC from SNV Spectra (d) First 10 PCs from SNV Spectra
Figure 10. Spectra similarity result-based PCA with 1 and 10 PCs of raw spectra (a-b) and 1 and 10 PCs of 
SNV normalised spectra (c-d). The blue error bar represents the control group, and the red represents the 
water deficit group.
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Figure 11. Spectra similarity based on PCA with 1 and 10 PCs of L1 normalised spectra (a-b) and 1 and 10 
PCs of L2 normalised spectra. The blue error bar represents the control group, and the red represents the water 
deficit group.

(b) First 10 PCs from L1 Spectra(a) First PC from L1 Spectra

(c) First PC from L2 Spectra (d) First 10 PCs from L2 Spectra

Spectra, which have been dimensionally reduced using ANOVA F-test, were processed 
with the same spectra similarity measurement method used for objective one. Results 
for raw, SNV, L1, and L2 spectra are shown in Figure 12. Improvement happens for all 
normalised spectrum types when comparing these results with the spectral discrimination 
in Figure 9. For SNV spectra, the duration taken for water stress detection was reduced 
from 4 days to just 4 days. Besides, even though the result on L1 spectra shows that water 
stress detection still fails in the first 7 days, a further separation between error bars can be 
observed. Different from L1 to L2 spectra show the successful separation of control and 
water deficit on the fourth day. The improvement from failure to success in just 4 days 
for water stress detection gives ANOVA F-test the highest efficiency when applied to L2 
spectra. From the results from PCA and ANOVA F-test, it can be deduced that ANOVA 
F-test works better in improving the performance of HSI analysis in terms of duration to 
detect water-deficit maise plants. Conversely, PCA can reduce the computational cost, but 
it does not affect the result of water stress detection.

A comparison was made with several well-known vegetation indices as used in the 
previous studies to quantify the effectiveness of the analysis method of HSI performed in 
this study for the use case of early drought stress detection in the plant (Andaryani et al., 
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(a) ANOVA on Raw Spectra (b) ANOVA on SNV Spectra

(d) ANOVA on L2 Spectra(c) ANOVA on L1 Spectra
Figure 12. Spectra similarity result on (a) raw (b) SNV (c) L1 and (d) L2 spectra after performing ANOVA 
F-test with blue error bar representing the control group and red error bar representing water deficit group.

2019; Ihuoma & Madramootoo, 2019). Figure 13 shows the result of separating samples 
from control and drought groups using NDVI, OSAVI, PRI 550 and RENDVI. All four 
VIs considered sensitive to water content cannot distinguish drought plants completely 
from the control group throughout the 9 days of the experiment. It further highlights the 
importance of normalisation to minimise collinear and scattering effects before analysis.

(a) NDVI (b) OSAVI
Figure 13. Vegetation indices value (a) NDVI, (b) OSAVI, (c) PRI 550 and (d) RENDVI for drought plants 
detection on raw spectra.
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CONCLUSION

In this paper, two comparisons have been carried out: the performances between the effect 
of SNV, L1, and L2 normalisation and between PCA and ANOVA F-test in water stress 
detection. The first objective was achieved with spectra similarity measurement performed 
on SNV spectra which successfully separated control and water-deficit groups in 4 days, 
while L1 and L2 spectra showed failure in water stress detection. Furthermore, the second 
objective was achieved by showing that similarity measurement on spectra after treatment 
using ANOVA F-test showed better performance in water stress detection. On the other 
hand, spectra similarity measurement after PCA showed the same result as in the non-
dimensionally reduced one. 
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